Try Before You Buy: How AI Remakes Home Makeover Business

It all started with the wallpaper swatches.

David Levine and his wife wanted to redecorate the dining room in their Manchester, U.K., home, but he couldn’t picture how any of the designs would look on their walls. So he created an AI tool that would do it for him.

The technology and Levine’s startup, DigitalBridge, use GPU-accelerated machine learning and computer vision to let people visualize how wallpaper, a coat of paint, new furniture and other home decor would look in their own rooms.

“I figured I wasn’t the only person who couldn’t imagine what wallpaper would look like in a room,” Levine said.

Undo Button

Levine was right. In an independent survey conducted for DigitalBridge, about a third of shoppers said they’d delayed or cancelled decorating projects because they couldn’t picture how items would look in their own homes. Most said they were afraid of making the wrong choice.

“You can’t undo paint on a wall. You can’t undo carpet. You can’t undo wallpaper,” Levine said. “We’re that undo button.”

You can’t yet use DigitalBridge to try out the chartreuse sofa or purple paint that’s caught your eye. In the next few months, the company will roll out its machine learning home decor tool with U.K. department store John Lewis and other European retailers who are incorporating it into their websites. It’s planning to expand to U.S. retailers by the end of the year.

Machine Learning for Home Decor

To get started with DigitalBridge, do-it-yourself decorators upload a photo of the room they plan to redo. Machine learning and computer vision detect, pixel by pixel, the room’s lighting and where walls, furniture and other items are in relation to each other. That’s so the virtual room matches the lighting and spatial characteristics of real life.

“If you’re trying to select wallpaper, we want to make sure it’s placed behind the furniture rather than on top of the furniture. If you have light shining in the window, we want to replicate that,” Levine said.

Levine trained his machine learning algorithm on GeForce GTX TITAN X GPUs using thousands of pictures of rooms. Then, he deployed it using NVIDIA Tesla K80 GPUs with the CUDA parallel computing platform in the Amazon cloud. Now DigitalBridge is integrating deep learning algorithms to improve accuracy, using the cuDNN library and the Caffe deep learning framework.

“We could not do anything like what we’re doing without GPUs, and we can’t do any deep learning without GPUs,” he said.

DigitalBridge is participating in our Inception virtual accelerator program, which assists startups that are changing industries with AI and data science. It is also a winner of our contest to select the top AI startups revolutionizing the retail industry.

Try Before You Buy

DigitalBridge isn’t the first to offer a try-before-you-buy tool for re-feathering your nest. But most rely on augmented reality and need a dedicated mobile app, Levine said. After first testing the technology as a mobile app, he learned that retailers don’t like them.

“With apps, you have to build multiple versions and continue to update them,” he said. It also requires customers to stop shopping and leave the store’s website to download the app.

Instead, DigitalBridge’s platform integrates with retailers’ sites, and customers can use it on mobile devices, tablets and PCs. Levine envisions it as something like a button on a store’s site that says “try this on in your own room.”

That crystal chandelier you’ve yearned for? With a few clicks, it’s in your virtual living room. Then it’s up to you to decide whether it was such a good idea after all.

Similar Stories